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Abstract
We analyse the universal features of the critical behaviour of frustrated
spin systems with noncollinear order. By means of the field theoretical
renormalization group approach, we study the 3D model of a frustrated magnet
and obtain pseudo-ε expansions for its universal order parameter marginal
dimensions. These dimensions govern accessibility of the renormalization
group transformation fixed points, and, hence, define the scenario of the phase
transition.

PACS numbers: 75.10.Hk, 11.10.Hi, 64.60.−i

1. Introduction

Remarkable progress achieved in the description of phase transitions and critical phenomena
due to application of the renormalization group (RG) [1] ideas leads sometimes to the
conclusion that all principal work in the field has been done, especially if universal features
of criticality are addressed. This is certainly not true, if one goes beyond a description of
the para-to-ferromagnetic phase transition in a standard N-vector model [2], which belongs
to the universality class of the O(N)-symmetric φ4 theory. To give an example, a study of
realistic systems often calls for account of a single-ion anisotropy [3], structural disorder [3]
or frustrations [4] that might essentially change the critical behaviour. An account of this new
physics still remains a challenging problem.

The theoretical RG description of the above-mentioned systems requires field theories
of complicated symmetry with several couplings. In theory, the critical point corresponds to
the fixed point of the RG transformations. Accessibility of the fixed point, along with the
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Table 1. Marginal dimension Nc3 obtained within different RG methods. See the text for details
of the methods.

Fixed 3D, resummed

6 loops ∼ε2 ∼1/N NPRG
3 loops
[13] [5] [6] [14] [15] [15] [16] [17] [18] [19] [7]

3.91(1) 6 6.4(4) 3.39 5.3(2) 5 3.24 4.8 4 5 5.1

(non-universal) initial conditions of the RG flow is governed by the so-called marginal field
dimensions. These are universal and together with the critical exponents and amplitude ratios
constitute intrinsic features of criticality. It is well established by now that the universal
features of a second-order phase transition in the 3D N-vector model are not sensitive to the
single-ion cubic anisotropy if N < N cub

c [3]. Neither are they changed upon a weak quenched
dilution by a non-magnetic component if only [3] N > Ndil

c . Currently, there exists a good
agreement between the numerical values of the marginal dimensions N cub

c , Ndil
c calculated in

numerous RG and MC studies [3, 9, 10]. However, this is not the case for the frustrated
systems, where even more marginal dimensions have been found and their numerical values
are still under discussion [4, 11].

The problem we want to raise in this report concerns the critical behaviour of the 3D
frustrated spin systems with noncollinear order. The most common physical realizations
of such systems are stacked triangular antiferromagnets (examples are given by CsMnBr3,

CsNiCl3, CsMnI3, CsCuCl3, VCl2, VBr2) and helimagnets (Ho, Dy, Tb, β-MnO2). In the
former case, the noncollinear order is caused by frustration due to the triangular geometry
of the underlying lattice, whereas in the latter one it is due to the competition of ferro- and
antiferromagnetic interactions. Currently, there exists a large literature devoted to the subject,
which results from more than 20 year long studies [4]. However, neither experimentally nor
theoretically has an unanimous conclusion been drawn so far about the nature of the phase
transition into the ordered state in these systems. Important physical quantities which are
under discussion are the marginal dimensions of the models. In particular, when the model
is generalized to describe N-component vectors [12] (physical systems mentioned above
correspond to N = 2, 3), one finds a marginal dimension Nc3 below which the phase transition
is of first-order, whereas for N > Nc3 it is of second-order. Several variants of the perturbative
RG expansions [5, 6, 13–16] and various truncations for the Wilson-like non-perturbative
RG (NPRG) equations [7, 17–19] give different numerical estimates for Nc3 (see table 1).
However, they all agree that such a dimension (along with two further marginal dimensions,
Nc2 and Nc1 , see below) exists. In our study, we aim at performing a thorough analysis of
these marginal dimensions by means of the pseudo-ε expansion5 [20]: the technique which is
known to provide the most accurate results in the 3D perturbative RG approach.

The rest of the paper is organized as follows: in the next section, we formulate the model
we are interested in and obtain the expansions for its marginal dimensions, section 3 is devoted
to the numerical estimates on their basis, section 4 gives conclusions and outlook.

2. The model and the pseudo-ε expansion

An effective Hamiltonian of the model of frustrated magnets with an N-component order
parameter reads [12]

5 For an application of the pseudo-ε expansion in determination of marginal dimensions see [9, 10].
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In (1), m0, u0, v0 are bare mass and couplings and φi ≡ φi(x) are N-component vector fields,
representing the cosine and sine modes associated with the spin ordering. The noncollinear
(chiral) ordering occurs for u, v � 0.

We sketch the fixed points (FPs) picture retrieved in the previous RG studies [12]. For the
high field dimensions N > Nc3 four FPs exist: the Gaussian, u = v = 0,G, the Heisenberg
u �= 0, v = 0,O(2N) symmetric, H (both unstable for the space dimension d = 3), and two
nontrivial FPs u �= 0, v �= 0 (with u, v > 0), chiral and antichiral C+ and C−. The FP C+

is stable and governs the chiral second-order phase transition. With a decrease of N, the FPs
C+ and C− merge at N = Nc3 and disappear: only unstable FPs G and H are present for N
just below Nc3 . Note that Pelissetto et al and Calabrese et al [5, 6] have claimed that, once
resummed, the six loop β-functions obtained directly in d = 3 exhibit a new root—a new
fixed point—below an extra marginal dimension of the field estimated at N ∼ 5.7. According
to these authors, this fixed point is neither analytically related to the Gaussian fixed point in
d = 4 nor to the fixed point found at large N in d = 3. It should therefore be non-perturbative,
although it is found within the perturbative framework. Thus, they claim that below this new
marginal dimension, and in particular for N = 2, 3, the transition is again of second order.
Note also that this scenario disagrees with the results obtained within the NPRG approach for
which the transition is (very weakly) of first order for N < Nc3 . We will return to this point
at the end of our report. As N is further decreased, the nontrivial FPs C+ and C−, existing
above Nc3 reappear at N � Nc2 , but now in the u > 0, v < 0 quadrant and thus do not
describe the chiral phase (they both have complex coordinates for N between Nc3 and Nc2 ).
Finally at N = Nc1 one of the nontrivial FPs merges with the FP H and, with further decrease
of N, passes to the quadrant u > 0, v > 0, still remaining unstable. The above picture is
supported both by the perturbative RG approach (ε-expansion accompanied by subsequent
resummation [14] or by a conjecture about the series behaviour [15], resummed expansion in
terms of renormalized couplings in a 3D RG scheme [5, 6, 13], 1/N expansion [15, 16]) and
the non-perturbative RG [7, 17–19].

Discrepancies between the values of the marginal dimensions Nci
obtained so far within

the perturbative RG (see table 1 for Nc3 ) to a great extent are because the series used for
their analysis were rather short [13–16] and in general are known to be asymptotic at best
[1]. So it is very desirable to perform an estimate of the marginal dimensions on the basis of
the expansions which, on the one hand would be of the highest order and, on the other hand,
would possess better convergence properties. As we show below, these two goals are reached
by applying the pseudo-ε expansion to the six-loop d = 3 RG β-functions obtained for the
effective Hamiltonian (1) in [5].

The method consists in introducing an auxiliary parameter (τ ) into the β-functions which
allows us to separate contributions to the FPs from the loop integrals of different order [20].
This is achieved by multiplying a zero-loop term by τ and obtaining FP coordinates and,
subsequently, all FP quantities of the theory as series in τ with final substitution τ = 1.
Starting from the six-loop d = 3 RG β-functions of [5] we get the expansions for the fixed
point coordinates and derive for the marginal dimensions

Nc3 = 21.797 959 − 15.620 635τ + 0.262 060τ 2

− 0.150 930τ 3 − 0.039 165τ 4 − 0.029 721τ 5 (2)
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Nc2 = 2.202 041 − 0.379 365τ + 0.202 166τ 2 − 0.084 951τ 3 + 0.092 744τ 4 − 0.097 961τ 5

(3)

Nc1 = 2.0 − 0.666 667τ + 0.145 212τ 2 − 0.094 836τ 3 + 0.099 757τ 4 − 0.112 325τ 5. (4)

Expansions (2)–(4), derived directly at d = 3, can be compared with the corresponding
ε = 4 − d-expansions [14]

Nc3 = 21.80 − 23.43ε + 7.088ε2 (5)

Nc2 = 2.202 − 0.569ε + 0.989ε2 (6)

Nc1 = 2 − ε + 1.294ε2. (7)

Formulae (2)–(4) take into account three orders of perturbation theory more than the highest
available ε = 4 − d-expansions (5)–(7). Moreover, comparing (2)–(4) and (5)–(7) one sees
that the expansion coefficients in the pseudo-ε series decay much faster and one may expect
to get more convergent results on their basis. And indeed this is the case as we will see in the
next section.

3. Numerical estimates of the marginal dimensions

The field theoretic RG expansions are known to have zero radius of convergence and different
resummation techniques are used to make numerical estimates on their basis [1]. Here, we
make use of the Padé analysis [21] to make an analytic continuation of the expansions for
τ = 1. On one hand, already this simple technique allows us to show essential features of the
pseudo-ε expansion behaviour; on the other hand, it allows us to determine numerical values
of the marginal dimensions with a sufficient accuracy. The results for the pseudo-ε expansion
series (2)–(4) are given below in the form of Padé tables. There, a result of an [M/N] Padé
approximant is represented as an element of a matrix with the usual notation, e.g. the first row
gives results of the mere summation of the series:

Nc3 =




21.798 6.177 6.439 6.288 6.249 6.220
12.698 6.435 6.344 6.236 6.126

1.318

9.827 6.290 6.230 6.182
1.751

8.463 6.247 6.155
1.453

7.695 6.217
7.220




(8)

Nc2 =




2.202 1.823 2.025 1.940 2.033 1.935
1.878 1.955 1.965 1.984 1.985
1.984 1.966 1.948

0.385 1.985
1.962 1.977 1.988
2.012
2.586 1.986

1.960




(9)

Nc1 =




2.0 1.333 1.479 1.384 1.483 1.371
1.500 1.453 1.421 1.432 1.431
1.458 1.032

1.105 1.431 1.431
1.421 1.436 1.431
1.446 1.432
1.415




. (10)
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Results shown by fractions indicate that the Padé approximant contained a pole for τ close
to 1 (the denominator shows the value of τ for which the pole is obtained). These tables can
be compared with the analogous tables for the ε-expansions (5)–(7):

Nc3 =

 21.80 −1.630 5.458

10.507 3.812
7.505


 (11)

Nc2 =

2.202 1.633 2.622

1.750 1.994
2.514


 (12)

Nc1 =

 2 1 2.294

1.333 1.564
1.813


 . (13)

One certainly sees that the convergence properties of the pseudo-ε expansion are better in
comparison with the ε-expansion (cf the convergence of the results along the main diagonal and
those parallel to it: there the Padé analysis is known to provide the most reliable data [21]). One
more feature of the expansions for Nci

is evident when one compares tables (8)–(10): whereas
the central elements of table (10) give a firm estimate for Nc1 : [2/2] = [3/2] = [2/3] = 1.431,
such stable behaviour is not found in the corresponding Padé tables (8), (9) for Nc3 , Nc2 .
Obviously, this different behaviour is connected with the different origin of the marginal
dimensions Nc1 from one side, and Nc3 , Nc2 from the other side. Indeed, the dimension Nc1

corresponds to merging of the non-trivial and Heisenberg FPs after which the non-trivial
FP continuously passes to the other quadrant of the u–v plane whereas dimensions Nc3 , Nc2

correspond to the coalescence and disappearance of two non-trivial FPs (see discussion at the
beginning of section 2).

To make the numerical estimates on the base of Padé tables (8)–(10) we proceed as
follows. For Nc3 we take on the main diagonal the highest Padé approximant with an estimate
[2/2] = 6.23 and suppose that the deviations from an account of higher-order terms will
not exceed the difference [2/2] − [1/1] = 0.21. For Nc2 we take the highest obtained
estimates [3/2] = [2/3] = 1.99 considering a confidence interval as [3/2] − [2/2] = 0.04.
Subsequently, for Nc1 the central value is given by [3/2] = [2/3] = [2/2] = 1.43 with a
confidence interval [2/2] − [1/1] = 0.02. Finally, we get for the marginal dimensions

Nc3 = 6.23(21) Nc2 = 1.99(4) Nc1 = 1.43(2). (14)

The above estimates include within the error bars all elements of corresponding Padé tables
except of the inverse approximants [0/N ] (and the approximant [5/0] of (9)) and therefore,
the confidence intervals in (14) are rather overestimated.

Comparison of our estimate for Nc3 with the perturbative RG data of table 1 supports recent
estimates [5, 6] Nc3 ∼ 6. We also suggest that the essential difference between this estimate
and the numbers obtained within ε- and 1/N -expansions [14–16] is because the last have not
been estimated with comparative accuracy which was caused in particular by the shortness
of the corresponding series6. Estimates of Nc2 available so far are due to the resummation
of three-loop massive RG expansions [13] and of the ε2 expansion [14] (6): Nc2 = 1.96 and
Nc2 = 2.03(1), correspondingly (see footnote 6). Together with the symmetry arguments

6 The confidence interval ±0.01 found in the three-loop studies of [13] should be considered rather as an accuracy
estimate of the calculation scheme, since the six-loop studies within the same perturbation technique [6] shift,
e.g., the central value for Nc3 from 3.91 to 6.



3574 Y Holovatch et al

[13] providing Nc2 > 2 our estimate suggests that the value of Nc2 should be located very
close to 2. In particular, this means that corresponding scenario of appearance of the pair of
non-trivial FPs which is governed by this marginal dimension might not be found in numerical
calculations for N = 2. Dimension Nc1 has its counterpart [13] as the marginal dimension
of the N-vector model with a single-ion cubic anisotropy: Nc1 = N cub

c

/
2, see section 1. The

last has been estimated by different methods. In particular, the Padé–Borel resummation of
the series (4) gives [9] a number coherent with the other data [3] Nc1 = N cub

c

/
2 = 1.431(3).

Comparison of this number with our estimate (14) based on a much less elaborate technique
supports the reliability of the scheme chosen here.

4. Conclusions

The numerical values of the marginal dimensions that we obtain represent clearly an
improvement of the preceding determinations performed by both the perturbative methods
and the NPRG one. Once again the pseudo-ε expansion turns out to be very accurate and
constitutes probably a new way to analyse the critical behaviour of 3D frustrated magnets.
However, the principal question about the order of the phase transition in these systems for
N = 2, 3 still remains open. Obviously, our studies are in coherence with the FP picture
of the NPRG and perturbative RG approaches, where no stable FP are found in the region
Nc3 > N > Nc2 (however the difference between numerical value of Nc3 and typical numerical
values found in the NPRG studies [7, 17–19] calls for a more detailed analysis). Nevertheless,
the existence of the FP found recently in [5, 6] and claimed to describe criticality of these
systems can neither be supported nor rejected by our perturbative approach. We think that
one possible way to shed light on this problem is to try to follow an evolution of this FP with
change of d in order to understand its origin at the upper critical dimension d = 4.
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Note added. After the completion of this work [22], we learned about ε4-results for Nc3 , Nc2 and a six-loop pseudo-ε
result for Nc3 [23]. The five-loop ε-expansion improves the ε2 data for Nc3 = 6.1(6) but leads to the unphysical
conclusion Nc2 = 1.968(1) < 2. The pseudo-ε expansion of [23] for Nc3 coincides with our formula (2), but we
report higher numerical accuracy.
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